Versiones no indistinguibles de procesos estocásticos

Esta entrada tiene por objeto mostrar un contraejemplo de dos procesos estocásticos tales que uno es versión del otro, pero no son indistinguibles. La mayoría de elementos de esta entrada se encuentran en el libro de Flemming y Harrington, Counting Processes and Survival Analysis (Wiley, 2005, pp. 16, 326-327).

Cuando definimos un proceso estocástico como en la entrada anterior y \Gamma=\mathbb R^+, se dice que la variable está indexada en el tiempo, y se define un camino aleatorio como la función X(\cdot,\omega):\mathbb R^+\rightarrow\mathbb R. Es decir, para cada elemento \omega\in\Omega, vemos cómo se comporta el proceso a medida que el tiempo va avanzando. Toda propiedad que adjudiquemos al proceso estocástico X, en realidad es una propiedad en un conjunto A\subset\Omega tal que A tiene probabilidad 1.

Ahora, dos variables aleatorias X,Y se dicen equivalentes si \textbf P[X\neq Y]=0, donde el evento \{X\neq Y\} está definido como

\{\omega\in\Omega: X(\omega)\neq Y(\omega)\}.

Quiere esto decir que las variables aleatorias son equivalentes si difieren a lo más en un conjunto de probabilidad nula.

Decimos que el proceso X es una versión del proceso Y si

\forall t\in\mathbb R^+,\ \ \textbf P[\omega\in\Omega:X_t(\omega)\neq Y_t(\omega)]=0,

es decir, el proceso X es una versión de Y si, dado un tiempo t\in\Gamma, se tiene que X_t y Y_t son variables aleatorias equivalentes.

Es posible imponer una restricción más fuerte: Decimos que dos procesos X, Y son indistinguibles si

\textbf P[\omega\in\Omega:\forall t\in\mathbb R^+, X_t(\omega)\neq Y_t(\omega)]=0,

es decir, los procesos son indistinguibles cuando los caminos aleatorios son iguales casi ciertamente (con probabilidad 1).

La diferencia entre versiones de procesos y procesos indistinguibles radica en que en el primer caso el cuantificador se encuentra fuera de la probabilidad, mientras que en el segundo caso es parte del evento de interés. Más aún, es claro que si los procesos X, Y son indistinguibles, entonces uno es una versión del otro. Sin embargo, es menos claro que si X, Y son versiones el uno del otro, entonces los dos procesos son indistinguibles. De hecho, no es cierto en general y se requiere la condición adicional de que los dos procesos sean continuos por derecha o los dos sean continuos por izquierda:

Teorema: Sean dos procesos X, Y ambos continuos por derecha. Se tiene que si X es versión de Y, entonces X, Y son procesos indistinguibles.

Demostración: Considérese \mathbb Q, el conjunto de los racionales. Para cada q\in\mathbb Q, tenemos que

\textbf P[\omega\in\Omega:X_q(\omega)\neq Y_q(\omega)]=0.

Si definimos N\subset\Omega como

N=\bigcup_{q\in\mathbb Q}\{\omega\in\Omega: X_q(\omega)\neq Y_q(\omega)\},

entonces \textbf P[N]=0. Considérense los caminos aleatorios de \omega en X y en Y. Como los dos procesos son continuos por derecha, para todo t\in\mathbb R^+, existe una sucesión de racionales \{q_n\} que decrece a t. De modo que, por la continuidad por derecha,

X_t(\omega)=\lim_{n\rightarrow\infty}X_{q_n}(\omega)=\lim_{n\rightarrow\infty}Y_{q_n}(\omega)=Y_t(\omega).

El teorema anterior también se cumple si la condición de continuidad por derecha se remplaza por la de continuidad por izquierda y su demostración es análoga. Dado el resultado, surge entonces el interés por un contraejemplo: ¿cuándo un par de procesos estocásticos X,Y son versiones el uno del otro pero no son indistinguibles? A continuación construimos dicho contraejemplo:

Ejemplo: Sea \Omega=[0,1], \mathcal B los conjuntos de Borel de \Omega y \textbf P la medida de Lebesgue en dicho espacio muestral. Definimos el proceso Y=\{Y_t(\omega):t\in[0,\infty)\} de la siguiente manera:

Y_t(\omega)=1      si t-\lfloor t\rfloor=\omega,

Y_t(\omega)=0      en otro caso,

donde \lfloor t\rfloor es la parte entera de t.   Entonces puede verse que para un \omega dado, el camino Y_t(\omega) tiene discontinuidades contables. Sin embargo, para t fijo, casi todos los caminos Y_t(\omega) son continuos en t, pues Y es continuo para todo \omega\neq\omega_t=t-\lfloor t\rfloor.

Si ahora definimos el proceso cero X_t=0, para todo t y todo \omega, entonces para todo t fijo tenemos que \textbf P[\omega\in\Omega:X_t(\omega)=Y_t(\omega)]=1, pero la probabilidad del conjunto en el que los caminos coinciden es cero.

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s