Variables aleatorias, elementos aleatorios y procesos estocásticos

En términos simples, una variable aleatoria X es una función que va del espacio muestral \Omega a los reales \mathbb R; es decir, X:\Omega\rightarrow\mathbb R. Sin embargo, esta definición carece de ciertos atributos importantes y se requiere una formulación más precisa.

Supongamos entonces un espacio de probabilidad (\Omega,\mathcal F,\textbf P). Un elemento aleatorio en un espacio medible (E,\mathcal E) es una función medible Z que va del espacio de probabilidad al espacio medible:

\{Z\in A\}\in\mathcal F,\ \ \ \ \ \ \ A\in\mathcal E,

donde

\{Z\in A\}:= \{\omega\in\Omega: Z(\omega)\in A\}=:Z^{-1}A.

Así las cosas, una variable aleatoria W es simplemente un caso particular de un elemento aleatorio en el que el conjunto de llegada son los reales \mathbb R (dotados con la \sigma-álgebra de Borel \mathcal B). Es decir,

\{W\in A\}\in\mathcal F,\ \ \ \ \ \ \ A\in\mathcal B.

Ahora, un proceso estocástico en los reales es una familia de variables aleatorias X=\{X_t:t\in\Gamma\}, indexadas en el conjunto \Gamma, donde cada X_t está definida en el mismo espacio de probabilidad (\Omega,\mathcal F,\textbf P). Algunos ejemplos caen bien:

  1. Una variable aleatoria es un caso particular de un proceso estocástico, tal vez el más sencillo, en el que \Gamma está compuesto por un único elemento, digamos \Gamma=\{1\}.
  2. Un véctor aleatorio (X_1,\ldots,X_k) también es un proceso estocástico en el cual \Gamma=\{1,\ldots,k\}.
  3. Si \Gamma=\mathbb N, entonces X es sencillamente una sucesión (infinita) de variables aleatorias.
  4. Si \Gamma=R, entonces X es un proceso estocástico continuo en el tiempo, como es el caso del movimiento browniano (cuya descripción matemática es obra de Einstein en el primero de sus tres grandes artículos en 1905).
  5. Si \Gamma=\mathbb Z^d, entonces X es un campo aleatorio discreto.

Otros ejemplos adicionales pueden encontrarse en las notas del curso de procesos estocásticos de Cosma Shalizi. Nótese que los tres primeros casos son comunes en la práctica de la probabilidad y la estadística desde etapas tempranas. Las variables aleatorias son el objeto básico de estudio de la probabilidad, los vectores aleatorios (sucesiones finitas) son comunes en la inferencia estadística y las propiedades asintóticas se construyen con sucesiones infinitas de variables aleatorias.

Un pensamiento en “Variables aleatorias, elementos aleatorios y procesos estocásticos

  1. Pingback: Versiones no indistinguibles | Probabilidad y ciencia

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s